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Abstract

In 2021, cardiovascular diseases accounted for 19.2
million deaths worldwide. Cryoablation has become an
effective therapy for arrhythmias, particularly atrial fibril-
lation; however, its success depends on precise lesion for-
mation, which is influenced by biological variability and
procedural accuracy. This work presents a mathematical
model of the cardiac cryoablation process with uncertainty
quantification, utilizing Monte Carlo simulations to assess
the impact of various conditions on tissue damage. Results
show that freeze–thaw cycles and the duration of the thaw-
ing phase impact lesion extent. The proposed framework
supports the analysis and optimization of ablation proto-
cols, contributing to safer and more effective treatments of
cardiac arrhythmias.

1. Introduction

Cardiac arrhythmias, particularly atrial fibrillation (AF),
affect approximately 46.3 million people globally [1].
Cryoablation is a minimally invasive therapy that applies
extreme cooling to myocardial tissue to produce controlled
lesions [2]. Mathematical modeling and simulations of
cryoablation allow the study of heat transfer, phase change,
and tissue response, supporting improvements in the safety
and efficacy of arrhythmia treatments.

Catheter ablation has become a standard treatment for
cardiac arrhythmias such as AF, supraventricular tachy-
cardias, and ventricular tachycardia [3]. Radiofrequency
(RF) ablation is widely used; however, its reliance on high
temperatures (≥ 50◦C) may lead to complications such as
carbonization and tissue desiccation if not properly con-
trolled [4]. Computational models of RF ablation have
highlighted the importance of considering tissue properties
such as density (ρ), specific heat (c), thermal conductiv-
ity (k), and electrical conductivity (σ) to understand lesion
formation better [5].

Cryothermal ablation (cryoablation) has emerged as an
alternative method, producing lesions through controlled
freezing rather than heating. Meta-analyses have shown
similar efficacy to RF with a favorable safety profile, and

its clinical use has been steadily increasing [6]. In this
context, mathematical modeling of cryoablation is crucial
for describing heat transfer, phase-change phenomena, and
thermal damage, providing insights into lesion geometry
and supporting the optimization of treatment strategies for
arrhythmias [7, 8].

The Pennes bioheat equation is widely employed to
model heat transfer in living tissues and has been exten-
sively applied in the context of cryoablation [2,9,10]. This
formulation accounts for thermal conduction, metabolic
heat generation, and blood perfusion, enabling a simplified
yet effective description of the complex thermal interac-
tions within the myocardium. When extended to incorpo-
rate temperature-dependent thermal properties and phase-
change effects, the Pennes model provides a practical
framework to simulate tissue cooling, ice formation, and
lesion growth during cryosurgery, supporting both experi-
mental interpretation and treatment planning [9]. For solv-
ing the mathematical model, we employ a Forward Time
Centered Space (FTCS) scheme to compute the numerical
solution, considering a heterogeneous medium [11].

We organise this paper as follows. Section 2 describes
the bioheat model, numerical approximation, and the un-
certainty quantification. The results are presented in sec-
tion 3 and discussed in section 4. Finally, section 5
presents the conclusions and plans for future work.

2. Methods

2.1. Mathematical Model

The Pennes bioheat equation describes the heat transfer
in living tissues:

ρc
∂T

∂t
= ∇ · (k∇T ) + ωbρbcb(Ta − T ) +Qm, (1)

where T is the tissue temperature and Ta = 37◦C the ar-
terial blood temperature. The volumetric heat capacity ρc
and thermal conductivity k vary with temperature to rep-
resent liquid (T > 0◦C), solid (T < −10◦C), and phase-
change states (−10◦C ≤ T ≤ 0◦C). The perfusion term
accounts for heat exchange with blood through ωb, ρb, and
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cb, while Qm represents metabolic heat generation. The
complete problem, with boundary and initial conditions, is
formulated as:


ρc

∂T

∂t
= ∇ · k∇T + ωbρbcb(Ta − T ) +Qm in Ω× I,

k∇T · n⃗ = 0 in ∂Ω× I,

T (·, 0) = 37.0 in Ω,

(2)

where Ω ⊂ R2 represents the spatial domain, I ⊂ R+

denotes the time domain, and T : Ω × I → R+ is the
tissue temperature field.

2.2. Numerical Scheme

The finite difference method (FDM) was applied to
solve Eq. (2) for the bioheat transfer problem. The sim-
ulation domain is a heterogeneous medium within a closed
domain Ω, discretized into a uniform spatial grid with a
spacing of h and a time grid with a step size of ht. We dis-
cretize the governing equation using a FTCS scheme [11].
So, the explicit FDM formulation becomes:

Tn+1
i,j = Tn

i,j +
∆t

ρc

(
∇h ·

(
k∇hT

n
)

+ ρbcbωb (Ta − Tn
i,j) +Qm

)
,

(3)

where

∇h · (k∇hT
n) =

1

h2

[
k
i+

1
2 ,j

(Tn
i+1,j − Tn

i,j)−

k
i− 1

2 ,j
(Tn

i,j − Tn
i−1,j) + k

i,j+
1
2
(Tn

i,j+1 − Tn
i,j)−

k
i,j− 1

2
(Tn

i,j − Tn
i,j−1)

]
.

(4)

This scheme has linear convergence, O(ht), in time
and quadratic convergence, O(h2), in space. Within the
FDM framework, thermal conductivity k is evaluated at
cell interfaces using the harmonic mean, e.g., ki+1/2,j,k ≈
2ki,j,kki+1,j,k/(ki,j,k + ki+1,j,k), to ensure flux conti-
nuity in heterogeneous medium. The stability condition
from [12] is adopted to determine the time step ht.

2.3. Thermal Damage

Thermal damage may occur either instantly, when the
temperature drops below the cryogenic necrosis threshold
Tnc = −50◦C, or progressively, if the tissue remains be-
low the cryogenic damage threshold Tdc = −20◦C for a
sufficient period (tdc = 60 s) [10]. We evaluate the extent
of injury by a destruction index βd ∈ [0, 1], where 0 in-
dicates undamaged tissue and 1 corresponds to complete

necrosis. For each cell, α is computed as:

α =


1, if T ≤ Tnc,

1

tdc

∫ t

0

(T < Tdc) dt, if T ≤ Tdc.
(5)

The destruction index is defined as βd = min(1, α).
The integral in Eq. (5) was evaluated numerically using
the rectangle rule, and the percentage of damaged tissue
was derived from the count of cells where βd = 1.0.

2.4. Uncertainty Quantification

The computational model allows the evaluation of how
different freezing and thawing durations influence temper-
ature evolution and tissue damage during cryoablation. In
our study, after a fixed freezing period of 150s, the ef-
fects of varying thawing durations were examined using
Monte Carlo simulations. This method repeatedly samples
from a random variable, specifically the thawing duration,
to evaluate the effect of uncertainty on the outcome. So,
we model the thawing phase using the following uniform
distribution:

X ∼ U(5, 20), (6)

where X is a random variable that represents the thawing
duration. The range for the thawing duration is based on
Handler [2].

3. Numerical Experiments

3.1. Computational Environment

We developed a numerical solver and implemented the
Monte Carlo algorithm in C++, compiled with gcc 12.6
using the -Ofast flag. Parallel processing was enabled
through OpenMP, and simulations were performed on an
Intel®CoreTM i7-10700 CPU (8 physical cores, 16 threads,
2.90 GHz) under Linux. Post-processing was carried out in
Python with Matplotlib.

3.2. Simulation Scenario

To model cryoablation in the short-axis geometry
(Fig. 1), temperature-dependent properties of tissue and
blood were considered (Table 1). Thermal conductiv-
ity, specific heat, and fusion enthalpy were incorporated
into the phase-transition range between Ts = −10◦C and
Tl = 0◦C, allowing a linear increase of ice content from
0% to 100% [9].

The temperature of the cryoprobe was modeled using a
time-dependent Dirichlet condition. At each time step, the
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Figure 1. Short-axis ventricular domain discretized on a
200× 200 grid points.

Table 1. Model parameters for the simulation, with Tl =
0◦C and Ts = −10◦C defining the phase-change limits,
basal metabolic heat generation Qm0 = 684 W m−3, and
blood specific heat cb0 = 3600 J (kg◦C)−1.

Parameter Temperature Value
κ Tl < T 0.537
[W/m◦C] Ts ≤ T ≤ Tl 0.537 + 1.8−0.537

Ts−Tl
(T − Tl)

T < Ts 1.8

Qm Tl < T Qm0 3
T−37
10

[W/m3] Ts ≤ T ≤ Tl Qm(Tl)
T − Ts

Tl − Ts
T < Ts 0

ρC Tl < T 3641113

[J/(m3◦C)] Ts ≤ T ≤ Tl
∆H

Tl − Ts
+

(ρC)l + (ρC)s
2

T < Ts 1657800
ωb T > Ts 0.01
[s−1] T ≤ Ts 0

ρbCb T > Ts cb0

(
T − Ts

37− Ts

)2

[J/(m3◦C)] T ≤ Ts 0

new probe temperature is calculated by applying a linear
cooling rate of approximately −10.54◦C/s to the previ-
ous temperature. Additionally, a lower limit is enforced
to ensure that the probe temperature does not drop below
−100◦C.

3.3. Experiments

To perform uncertainty quantification, we conduct 1,000
simulations using the Monte Carlo method, with the thaw-
ing duration parameter treated as a random variable. We
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Figure 2. Mean tissue damage at the end of the simulation
(t = 340s), based on 1, 000 Monte Carlo simulations.

store the quantities of interest for each experiment, includ-
ing the number of damaged cells at each time step and the
history of the damaged area.

Figure 2 depicts the average damage distribution at the
last time step across all simulations. The mean and stan-
dard deviation for the evolution of the injured area over
time are shown in Figure 3A. Finally, Figure 3B illustrates
the progression of the damaged region by showing the min-
imum and maximum distances from the probe to the dam-
age front along with their standard deviation.

4. Discussions

The results demonstrate the spatial distribution of tissue
injury and its progression during cryoablation. Figure 2
shows that damage is concentrated around the cryoprobe
with a smooth radial decay, reflecting thermal gradients
and perfusion. In Figure 3A, the injured area grows rapidly
at the beginning of the freezing phase and then stabilizes,
while the variability across simulations highlights the in-
fluence of thawing duration. Figure 3B shows the progres-
sion of the damage front through minimum and maximum
distances from the probe, with the associated variability
indicating irregular lesion geometry. These findings un-
derscore the importance of incorporating uncertainty quan-
tification to predict lesion formation better and optimize
cryoablation protocols.

5. Conclusions and Future Works

The presented framework enables the evaluation of the
effects of different parameters on the outcome of cardiac
cryosurgery. The experiments demonstrated that the in-
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Figure 3. (A) Evolution of total damaged area over time;
(B) minimum and maximum distances from the probe cen-
ter to the damage boundaries. Solid lines indicate the mean
and shaded regions the standard deviation from 1, 000
Monte Carlo simulations.

terim thawing duration influences the extent of myocardial
damage after the cardiac cryoablation. This study demon-
strates that this computational framework can be a valuable
tool for in silico trials that optimize parameters to achieve
improved clinical results.

For future work, we plan to analyze different types
of protocols employed in cardiac cryoablation, utilizing
patient-specific geometries, to propose an optimized pro-
tocol tailored to a specific patient.
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Pehböck D, Hintringer F, Baumgartner C. Computer sim-
ulation of cardiac cryoablation: Comparison with in vivo
data. Medical Engineering amp Physics December 2013;
35(12):1754–1761. ISSN 1350-4533.

[10] Tanwar S, Famhawite L, Verma PR. Numerical simulation
of bio-heat transfer for cryoablation of regularly shaped tu-
mours in liver tissue using multiprobes. Journal of Thermal
Biology April 2023;113:103531. ISSN 0306-4565.

[11] LeVeque RJ. Finite difference methods for ordinary
and partial differential equations: steady-state and time-
dependent problems. SIAM, 2007.

[12] Reis RF, dos Santos Loureiro F, Lobosco M. 3D numerical
simulations on gpus of hyperthermia with nanoparticles by
a nonlinear bioheat model. Journal of Computational and
Applied Mathematics 2016;295:35–47.

Address for correspondence:

Ruy Freitas Reis
Universidade Federal de Juiz de Fora/Departamento de Ciência
da Computação, Room 429
ruy.reis@ufjf.br

Page 4


	Introduction
	Methods
	Mathematical Model
	Numerical Scheme
	Thermal Damage
	Uncertainty Quantification

	Numerical Experiments
	Computational Environment
	Simulation Scenario
	Experiments

	Discussions
	Conclusions and Future Works

